

Question Paper Code: X 20444

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Fourth Semester

Electronics and Communication Engineering EC 6402 – COMMUNICATION THEORY

(Regulations 2013)

(Common to: PTEC 6402 – Communication Theory for B.E. (Part-Time) – Third Semester – Electronics and Communication Engineering – (Regulations – 2014)

Time: Three Hours Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Draw the AM modulated wave for modulation index = 0.5 and its spectra.
- 2. Define heterodyning.
- 3. Compare amplitude and angle modulation schemes.
- 4. Write the Carson's rule.
- 5. State Central Limit Theorem.
- 6. Write Einstein Wiener Khintchine relation.
- 7. Give the definition of noise equivalent temperature.
- 8. Define capture effect in FM.
- 9. State the properties of entropy.
- 10. What is Shannon's limit?

PART - B

 $(5\times13=65 \text{ Marks})$

11. a) Derive the expression for amplitude modulated wave and explain any one method to generate and demodulate it.

(OR)

- b) Derive the expression for DSB-SC AM. Explain a method to generate and detect it.
- 12. a) An angle modulated signal is described by $X_c(t) = 10 \cos \left[2\pi (10^6)t + 0.1\sin(10^3)\pi t\right]$.
 - i) Considering $X_c(t)$ as a PM signal with kp = 10, find m(t). (7)
 - ii) Considering X_c (t) as a FM signal with $kp = 10\pi$, find m(t).

(OR)

- b) i) Explain with diagrams the generation of FM using direct method. (7)
 - ii) With the phasor representation explains the foster seeley discriminator. (6)
- 13. a) Consider two linear filters connected in cascade as shown in Fig. 13(a). Let X(t) be a stationary process with a autocorrelation function $R_x(\tau)$, the random process appearing at the first input filter is V(t) and the second filter output is Y(t). (13)
 - i) Find the autocorrelation function of Y(t)
 - ii) Find the cross correlation function $\boldsymbol{R}_{vy}(\tau)$ of $\boldsymbol{V}(t)$ and $\boldsymbol{Y}(t).$

- b) The amplitude modulated signal is defined as $X_{AM}(t) = A m(t) \cos(\omega_c t + \theta)$ where m(t) is the baseband signal and $A \cos(\omega_c t + \theta)$ is the carrier. The baseband signal m(t) is modeled as a zero mean stationary random process with the autocorrelation function $R_{xx}(\tau)$ and the PSD Gx(t). The carrier amplitude A and the frequency ω_c are assumed to be constant and the initial carrier phase θ is assumed to be a random uniformly distributed in the interval $(-\pi, \pi)$ Furthermore, m(t) and θ are assumed to be independent. (13)
 - i) Show that $X_{AM}(t)$ is Wide Sense Stationary
 - ii) Find PSD of $X_{AM}(t)$.

14.	a)	ŕ	Define Narrow band noise and explain the representation of Narrow Band Noise in terms of In-Phase and Quadrature Components. Explain Pre-emphasis and De-emphasis in FM. (OR)	(7) (6)
	b)		xplain the noise in DSB-SC receiver using synchronous or Coherent detection and calculate the figure of merit for a DSB-SC system.	
15.	a)	ŕ	The two binary random variables X and Y are distributed according to the joint PMF given by $P(X=0, Y=1)=1/4$; $P(X=1, Y=1)=1/2$; $P(X=1, Y=1)=1/4$; Determine $H(X, Y)$, $H(X)$, $H(Y)$, $H(X/Y)$ and $H(Y/X)$. Define entropy and plot the entropy of a binary source.	(8) (5)
			(OR)	
	b)		xplain the Huffman coding algorithm with a flow chart and illustrate it sing an example.	
			PART – C (1×15=15 Mar	ks)
16.	a)			(15)
			(OR)	
	b)		raw an envelope detector used for demodulation of AM and explain its peration.	(15)